Homework 3 Solutions

Math 131B-1

- (3.38) Let $S \subset T \subset M$. Recall that a set U is open in T if and only if it is equal to the intersection $V \cap T$ of T with some set V which is open in M. With that in mind, first suppose S is compact in M. Then if $\left\{U_{\alpha}\right\}_{\alpha \in A}$ is a covering of S consisting of sets in T, we may find an open covering $\left\{V_{\alpha}\right\}_{\alpha \in A}$ consisting of open sets $V_{\alpha} \subset M$ such that $V_{\alpha} \cap T=U_{\alpha}$. Since S is compact in M, some finite subcover $\left\{V_{1}, \cdots, V_{n}\right\}$ covers S. So $S \subset \bigcap_{i=1}^{n} V_{i}$, so since $S \subset T, S \subset \bigcap_{i=1}^{n}\left(V_{i} \cap T\right)=\bigcap_{i=1}^{n} U_{i}$. Therefore $\left\{U_{1}, \cdots, U_{n}\right\}$ is a finite subcover of $\left\{U_{\alpha}\right\}_{\alpha \in A}$, and since $\left\{U_{\alpha}\right\}_{\alpha \in A}$ was an arbitrary open covering of S in T, S is compact in T. The other direction, proving that S compact in T implies S compact in M, is very similar.
This shows that compactness is an absolute, not relative, property.
- (3.42) Let $(M, d)=(\mathbb{Q},|\cdot|)$, that is, our ambient metric space is the rational numbers with the usual notion of distance. Let $S=(a, b) \cap \mathbb{Q}$. Then S is clearly bounded since $S \subset B(a ;|b-a|)$. Moreover S is closed, since S is the intersection of the closed set $[a, b]$ in $(\mathbb{R},|\cdot|)$ with M. However, we claim that S is not compact. We will prove this by giving an infinite subset of S which does not have a limit point. For every $n \in \mathbb{N}$, let c_{n} be a rational number in $\left(a, a+\frac{1}{n}\right) \cap(a, b)$. Then $C=\left\{c_{n}\right\} \subset S$ has only one limit point in \mathbb{R}, namely a, and no limit points in S. (To see this, observe that if x is a limit point of C, then any neighbourhood of x must contain infinitely many points of C. This is only true of a.) Therefore S is not compact.
- (3.17) Let $S \subset \mathbb{R}^{n}$. For each isolated point x of S, choose a ball $U_{x}=B(x ; r)$ which contains no points of x other than x. Also, let $U^{\prime}=\mathbb{R}^{n}-T$, where T is the set of all isolated points of S. Then $U^{\prime} \bigcup\left\{U_{x}: x \in T\right\}$ is an open cover of S. Ergo a countable subcover also covers S. But since every set in our cover contains at most one point of T, this implies T is countable.
- (3.20) Let $S=\mathbb{Z} \subset \mathbb{R}$, and let $U_{z}=\left(z-\frac{1}{2}, z+\frac{1}{2}\right)$ for all $z \in \mathbb{Z}$. Then $\left\{U_{z}: z \in \mathbb{Z}\right\}$ is a countable open covering of \mathbb{Z} such that no finite subcover covers \mathbb{Z} (since every open set in the cover contains exactly one integer).
- (3.22) A collection of disjoint open sets $\left\{U_{\alpha}\right\}$ in \mathbb{R}^{n} is an open cover for itself. Since we know any open cover of a set in \mathbb{R}^{n} can always be reduced to a countable subcover, and no nontrivial subcover of $\left\{U_{\alpha}\right\}$ covers $S=\bigcup U_{\alpha}$, we see that the cover $\left\{U_{\alpha}\right\}$ must have been countable to start with. For the closed case, consider $\{\{r\}: r \in \mathbb{R}\}$, which is an uncountable collection of closed disjoint sets.
- (4.7) Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in (S, d). Let $\epsilon>0$. Then there exists N_{1} such that for $n>N_{1}, d\left(x_{n}, x\right)<\frac{\epsilon}{2}$ and N_{2} such that for $n>N_{2}, d\left(y_{n}, y\right)<\frac{\epsilon}{2}$. By the triangle inequality, for any n we know that $d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x\right)+d(x, y)+d\left(y, y_{n}\right)$, implying that $d\left(x_{n}, y_{n}\right)-d(x, y)<d\left(x_{n}, x\right)+d\left(y, y_{n}\right)$, and similarly, $d(x, y) \leq d\left(x, x_{n}\right)+$ $d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y\right)$, so $d(x, y)-d\left(x_{n}, y_{n}\right)<d\left(x_{n}, x\right)+d\left(y, y_{n}\right)$. Therefore $\mid d(x, y)-$ $d\left(x_{n}, y_{n}\right) \mid<d\left(x_{n}, x\right)+d\left(y_{n}, y\right)$, and in particular, for any $n>\max \left\{N_{1}, N_{2}\right\}$, we have $\left|d(x, y)-d\left(x_{n}, y_{n}\right)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Ergo $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
- (4.8) Let (S, d) be a compact metric space. Let $\left\{x_{n}\right\}$ be a sequence in S, and $T=$ $\left\{x_{n}: n \in \mathbb{N}\right\}$ be its set of values. If T is finite, $\left\{x_{n}\right\}$ is eventually constant, hence converges. If T is infinite, T has a limit point p in S. Choose some $\left\{x_{k_{1}}\right\}$ such that $x_{k_{1}} \in B(p ; 1)$; this will be the first element of a subsequence converging to p. Assume we have constructed the $(n-1)$ st element $x_{k_{n-1}}$ of our subsequence. Then to construct the nth element, choose some $x_{k_{n}} \in B\left(p ; \frac{1}{n}\right)$ such that $k_{n}>k_{n-1}$. This is always possible since there are infinitely many points of T in $B\left(p ; \frac{1}{n}\right)$ but only finitely many points x_{n} of T such that $n<k_{n-1}$. The subsequence $\left\{x_{k_{n}}\right\}$ we have chosen converges to p by construction.
- (4.9)Let A be a complete subspace of a metric space S. Suppose that p is a limit point of S. Then by Theorem 4.4, there is a sequence $\left\{x_{n}\right\}$ in A converging to p; since $\left\{x_{n}\right\}$ is convergent, it must be Cauchy, hence must converge in A. This implies that $p \in A$. Ergo the set A contains all its limit points, hence is closed. Conversely, suppose A is closed and S is complete. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in S. Then $\left\{x_{n}\right\}$ converges to some limit x_{0} in S. This x_{0} is a limit point of A (since it is the limit of a sequence of points in A) so since A is closed, $x_{0} \in A$. Ergo $\left\{x_{n}\right\}$ converges in A, implying that A is complete.
- Sets in \mathbb{R}^{2}. Drawing the sets shows that S_{1} and S_{2} are not bounded, and S_{5} is not closed, so these three are not compact. However, S_{3} and S_{4} are closed and bounded in \mathbb{R}^{2}, hence compact.
- Metrics with the same convergence properties.
- We have $B_{\left(\mathbb{R}^{n}, d_{2}\right)}\left(\mathbf{x} ; \frac{r}{\sqrt{n}}\right) \subset B_{\left(\mathbb{R}^{n},\|\cdot\|\right)}(\mathbf{x} ; r)$ (the box of edge length $\frac{2 r}{\sqrt{n}}$ fits inside the sphere of radius r) and $B_{\left(\mathbb{R}^{n}, d_{2}\right)}(\mathbf{x} ; r) \subset B_{\left(\mathbb{R}^{n},\|\cdot\|\right)}(\mathbf{x} ; r)$ (the sphere of radius r fits inside the box of edge length $2 r$).
- Suppose $\mathbf{x}^{k} \rightarrow \mathbf{x}^{0}$ with respect to the metric d_{2}. Then for every $\epsilon>0$, there is some N such that $k \geq N$ implies that $d_{2}\left(\mathbf{x}^{k}, \mathbf{x}^{0}\right)<\epsilon \sqrt{n}$. But by the first part of this problem, this implies that $\left\|\mathbf{x}^{n}-\mathbf{x}^{0}\right\|<\epsilon$ for $n \geq N$, so $\mathbf{x}^{k} \rightarrow \mathbf{x}^{0}$ with respect to the metric d_{2}. Likewise, suppose $\mathbf{x}^{k} \rightarrow \mathbf{x}^{0}$ with respect to the metric $\|\cdot\|$. Then for every $\epsilon>0$, there is some N such that $k \geq N$ implies that $\left\|\mathbf{x}^{k}-\mathbf{x}^{0}\right\|<\epsilon$. But by the first part of this problem, this implies that $d_{2}\left(\mathrm{x}^{k}, \mathrm{x}^{0}\right)<\epsilon$ for $n \geq N$,
so $\mathrm{x}^{k} \rightarrow \mathrm{x}^{0}$ with respect to the metric d_{1}.
- Extremely similar to the second part of this problem. Since Cauchy sequences converge in $\left.\mathbb{R}^{n},\|\cdot\|\right)$, and since whether a sequence converges and whether a sequence is Cauchy is unaffected by the choice of metric, we conclude that $\left(\mathbb{R}^{n}, d_{2}\right)$ is complete.

