
Homework 3 Solutions
Math 131B-1

• (3.38) Let S ⊂ T ⊂ M . Recall that a set U is open in T if and only if it is equal to
the intersection V ∩ T of T with some set V which is open in M . With that in mind,
first suppose S is compact in M . Then if {Uα}α∈A is a covering of S consisting of sets
in T , we may find an open covering {Vα}α∈A consisting of open sets Vα ⊂M such that
Vα ∩ T = Uα. Since S is compact in M , some finite subcover {V1, · · · , Vn} covers S.
So S ⊂

⋂n
i=1 Vi, so since S ⊂ T , S ⊂

⋂n
i=1(Vi ∩ T ) =

⋂n
i=1 Ui. Therefore {U1, · · · , Un}

is a finite subcover of {Uα}α∈A, and since {Uα}α∈A was an arbitrary open covering of
S in T , S is compact in T . The other direction, proving that S compact in T implies
S compact in M , is very similar.

This shows that compactness is an absolute, not relative, property.

• (3.42) Let (M,d) = (Q, | · |), that is, our ambient metric space is the rational numbers
with the usual notion of distance. Let S = (a, b)∩Q. Then S is clearly bounded since
S ⊂ B(a; |b − a|). Moreover S is closed, since S is the intersection of the closed set
[a, b] in (R, | · |) with M . However, we claim that S is not compact. We will prove this
by giving an infinite subset of S which does not have a limit point. For every n ∈ N,
let cn be a rational number in (a, a + 1

n
) ∩ (a, b). Then C = {cn} ⊂ S has only one

limit point in R, namely a, and no limit points in S. (To see this, observe that if x is
a limit point of C, then any neighbourhood of x must contain infinitely many points
of C. This is only true of a.) Therefore S is not compact.

• (3.17) Let S ⊂ Rn. For each isolated point x of S, choose a ball Ux = B(x; r) which
contains no points of x other than x. Also, let U ′ = Rn − T , where T is the set of all
isolated points of S. Then U ′

⋃
{Ux : x ∈ T} is an open cover of S. Ergo a countable

subcover also covers S. But since every set in our cover contains at most one point of
T , this implies T is countable.

• (3.20) Let S = Z ⊂ R, and let Uz = (z − 1
2
, z + 1

2
) for all z ∈ Z. Then {Uz : z ∈ Z} is

a countable open covering of Z such that no finite subcover covers Z (since every open
set in the cover contains exactly one integer).

• (3.22) A collection of disjoint open sets {Uα} in Rn is an open cover for itself. Since
we know any open cover of a set in Rn can always be reduced to a countable subcover,
and no nontrivial subcover of {Uα} covers S =

⋃
Uα, we see that the cover {Uα} must

have been countable to start with. For the closed case, consider {{r} : r ∈ R}, which
is an uncountable collection of closed disjoint sets.



• (4.7) Let xn → x and yn → y in (S, d). Let ε > 0. Then there exists N1 such
that for n > N1, d(xn, x) < ε

2
and N2 such that for n > N2, d(yn, y) < ε

2
. By the

triangle inequality, for any n we know that d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn),
implying that d(xn, yn)−d(x, y) < d(xn, x)+d(y, yn), and similarly, d(x, y) ≤ d(x, xn)+
d(xn, yn) + d(yn, y), so d(x, y) − d(xn, yn) < d(xn, x) + d(y, yn). Therefore |d(x, y) −
d(xn, yn)| < d(xn, x) + d(yn, y), and in particular, for any n > max{N1, N2}, we have
|d(x, y)− d(xn, yn)| < ε

2
+ ε

2
= ε. Ergo d(xn, yn)→ d(x, y).

• (4.8) Let (S, d) be a compact metric space. Let {xn} be a sequence in S, and T =
{xn : n ∈ N} be its set of values. If T is finite, {xn} is eventually constant, hence
converges. If T is infinite, T has a limit point p in S. Choose some {xk1} such that
xk1 ∈ B(p; 1); this will be the first element of a subsequence converging to p. Assume
we have constructed the (n−1)st element xkn−1 of our subsequence. Then to construct
the nth element, choose some xkn ∈ B(p; 1

n
) such that kn > kn−1. This is always

possible since there are infinitely many points of T in B(p; 1
n
) but only finitely many

points xn of T such that n < kn−1. The subsequence {xkn} we have chosen converges
to p by construction.

• (4.9)Let A be a complete subspace of a metric space S. Suppose that p is a limit point
of S. Then by Theorem 4.4, there is a sequence {xn} in A converging to p; since {xn}
is convergent, it must be Cauchy, hence must converge in A. This implies that p ∈ A.
Ergo the set A contains all its limit points, hence is closed. Conversely, suppose A is
closed and S is complete. Let {xn} be a Cauchy sequence in S. Then {xn} converges
to some limit x0 in S. This x0 is a limit point of A (since it is the limit of a sequence
of points in A) so since A is closed, x0 ∈ A. Ergo {xn} converges in A, implying that
A is complete.

• Sets in R2. Drawing the sets shows that S1 and S2 are not bounded, and S5 is not
closed, so these three are not compact. However, S3 and S4 are closed and bounded in
R2, hence compact.

• Metrics with the same convergence properties.

– We have B(Rn,d2)(x; r√
n
) ⊂ B(Rn,||·||)(x; r) (the box of edge length 2r√

n
fits inside the

sphere of radius r) and B(Rn,d2)(x; r) ⊂ B(Rn,||·||)(x; r) (the sphere of radius r fits
inside the box of edge length 2r).

– Suppose xk → x0 with respect to the metric d2. Then for every ε > 0, there is
some N such that k ≥ N implies that d2(x

k,x0) < ε
√
n. But by the first part of

this problem, this implies that ||xn−x0|| < ε for n ≥ N , so xk → x0 with respect
to the metric d2. Likewise, suppose xk → x0 with respect to the metric ||·||. Then
for every ε > 0, there is some N such that k ≥ N implies that ||xk − x0|| < ε.
But by the first part of this problem, this implies that d2(x

k,x0) < ε for n ≥ N ,



so xk → x0 with respect to the metric d1.

– Extremely similar to the second part of this problem. Since Cauchy sequences
converge in Rn, || · ||), and since whether a sequence converges and whether a
sequence is Cauchy is unaffected by the choice of metric, we conclude that (Rn, d2)
is complete.


